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1. Introduction 

The analysis of the radiating infinite flange problem has been widely studied and different 
methods for determining the aperture fields are presented in the published literature (1–3). In 
practice, flush mounted aperture antennas are widely used and are often approximated by an 
aperture in an infinite conducting surface (infinite flange). Furthermore, the solutions determined 
by these methods reasonably approximate those of a radiating waveguide with no infinite 
conducting surface (4). Although accurate, these methods require the rigorous calculation of the 
fields at the aperture of the waveguide.  

This report illustrates a more straightforward approach that directly computes the radiated far 
field eliminating the direct calculation of the aperture field. This approach uses a modal 
decomposition matrix (MDM) method based on the sampling of the transverse free space wave 
number to determine the spectral coefficients of the widely used stationary phase approach. The 
results determined by our method are compared to the far-field radiation patterns achieved using 
CST Studio Suite software for the same problem. 

2. Modal Decomposition of a Rectangular Waveguide 

This section describes the theory of matching the transverse electric and magnetic fields that 
exist inside a uniform rectangular waveguide to those of the radiated far fields in free space. The 
modal decomposition described here is based on the theory published by Felsen and Marcuvitz 
(5, 9). The transverse field inside the guide is assumed to be generated from the dominant 
propagating mode inside the waveguide. The dominant mode is determined by the lowest cutoff 
frequency in the waveguide and for a rectangular waveguide the transverse electric (TE10) mode 
is the dominant mode. 

By matching tangential boundary conditions at the aperture, a system of equations is derived that 
will directly yield the Fourier transform of the transverse aperture field. Based on this, we can 
use the stationary phase approximation to calculate the far-field radiation patterns. 

Figure 1 shows two orientations of the same rectangular waveguide.  A half-space boundary 
exists at the aperture (z = 0), as depicted in figure 1a, and the waveguide extends to –∞ in the 
negative z-direction.  This is known as the semi-infinite waveguide approximation (5). Using this 
approximation, we can construct the form of the electric and magnetic fields that exist inside the 
waveguide due to an incident TE10 mode. 
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Figure 1. (a) Illustration of the boundary between the waveguide and  
free space at z = 0.  The thickness of the PEC walls is  
assumed to be negligible in comparison to the wavelength.  
(b) Illustration of a transverse cross section of the waveguide.   
Again the thickness of the ground plane around the waveguide 
 is assumed to be negligible in comparison to wavelength, 
 i.e., less than the skin depth. 

2.1 Incident TE10 Mode Case 

The incident TE10 mode shown in figure 1a is assumed to exist inside the waveguide with the 
following form: 

 ( ) ( )'' ( , )Tinc NE r e x y V z=  (1a) 

 ( ) ( )'' ( , )Tinc NH r h x y I z=  (1b) 

where V(z) and I(z) are the voltage and current at point z inside the waveguide, and are defined 
by solutions to the wave equation. The subscript N denotes that this is the incident mode 
impingent on the aperture (z = 0) and the superscript ’’ denotes that this is a TE mode. The 
superscript ’ is used to denote the transverse magnetic (TM) mode. The mode functions eυ(x,y) 
and hυ(x,y) are defined as 

 

' ( , ) ( , )

' cos sin
2 2

sin cos
2 2

T

o

o

e x y x y

m m a n bA x x y
a a b

n m a n by x y
b a b

υ υ

υ
π π π

π π π

= −∇ Φ

       = − + +             
      + + +             

 (2a) 



 

3 

 

ˆ' ( , ) ' ( , )
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υ υ

υ
π π π

π π π

= ×

       = + +             
      − + +               (2b) 

 

ˆ'' ( , ) '' ( , )
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       = + +             
      − + +               (2c) 

 

'' ( , ) ( , )

'' sin cos
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cos sin
2 2
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o
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h x y x y

m m a n bA x x y
a a b

n m a n by x y
b a b

υ υ

υ
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= −∇ Ψ

       = + +             
      + + +               (2d) 

where ( , ) ' sin sin
2 2

m a n ax y A x y
a bυ υ
π π      Φ = + +            

,

( , ) '' cos cos
2 2

m a n bx y A x y
a bυ υ
π π      Ψ = + +            

, and υ represents the (m,n) pair known as the 

mode number (5). The two mode number indices can take integer values zero or greater. For 
instance, the TE10 mode has mode indices of m = 1 and n = 0. A’υ and A’’υ are determined by 
normalizing equation 2 across the transverse plane of the waveguide in figure 1b as (5) 

 

2 2
2

2 2

' ' ( , ) ' ( , )

b a

mn mn kl mk nl
b a

A e x y e x y dxdy δ δ
− −

=∫ ∫ 

 (3a) 

 

2 2
2

2 2

'' '' ( , ) '' ( , )

b a

mn mn kl mk nl
b a

A e x y e x y dxdy δ δ
− −

=∫ ∫ 

 (3b) 

where δ is defined as δmk = 0 for m ≠ k and δmm = 0. Solving equation 3 for the normalization 
constants yields 
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2 2

2' mn
mnA

a bm n
b a

π
Ρ =  

  +
 (4a) 

 
2 2

1; , 0
'' , ,

2; , 0
m n mn

mn m n
m n

A
m nb am n

a b

ξ ξ
ξ ξ

π

  =Ρ
= =    =  +

 (4b) 

where Pmn is the incident mode’s amplitude. Taking equations 2 and 4 into account, we can 
construct the total transverse E- and H-fields inside the waveguide 

 
( )

( ) ( )
( ) '' ( , ) '' '' ( , )

' ' ( , ) '' '' ( , ) , 0

N N

M M

j z j z
T N N N

j z j z
M M M M

M N

E r e x y e z e x y e

z e x y e z e x y e z

κ κ

κ κ

− +

+ +

≠

= + Γ

 + Γ +Γ ≤ ∑



   (5a) 

 
( ) ( )

( )
'' '' ( , ) '' '' '' ( , ) )

' ' ' ( , ) '' '' '' ( , ) , 0

N N

N N

j z j z
T N N N N N

j z j z
M M M M M M

M N

H r Y h x y e Y z h x y e

Y z h x y e Y h x y e z

κ κ

κ κ

− +

+ +

≠

= − Γ

 − Γ + Γ ≤ ∑



  (5b) 

where r = x·xo + y·yo + z·zo, the subscript M denotes all mode numbers that are not incident on the 
aperture, and Γ is the reflection coefficient at the aperture. Notice that both the incident and non-
incident modes are reflected from the aperture at z = 0. Z’υ, Z’’υ, and κυ are defined by  

 

1'
'

Z
Y

υ
υ

υ

κ
ωε

= =
 (6a) 

 

1''
''

Z
Yυ

υ υ

ωµ
κ

= =
 (6b) 

 2 2
Tk kυ υκ = −  (6c) 

 
2 2

2 2 2
T x y

m nk k k
a bυ
π π   = + = +   

   
 (6d) 

Here k is the free space wave number and kTυ is the transverse wave number within the 
waveguide. The equations for the transverse electric and magnetic fields beyond the aperture (z ≥ 
0) can be defined via a Fourier transform as  

 
( ) 2

1 ( , ) , 0
(2 )

j k r
T T x y x yE r E k k e dk dk z

π

∞ ∞
−

−∞ −∞

= ≥∫ ∫ 



 (7a) 

 
( ) 2

1 ( , ) , 0
(2 )

j k r
T T x y x yH r H k k e dk dk z

π

∞ ∞
−

−∞ −∞

= ≥∫ ∫ 



 (7b) 
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where the ~ denotes that these components exist in the spectral domain. In order to determine 
( , )T x yE k k  and ( , )T x yH k k , we start by equating equations 5 and 7 at z = 0, which is justified by 

the tangential boundary condition 

 [ ] 2

1'' ( , )(1 '' ) ' ( , ) ' '' ( , ) '' ( , )
(2 )

Tj k
N N M M M M x y x y

M N
e x y e x y e x y E k k e dk dkρ

π

+∞ +∞
−

≠ −∞ −∞

+ Γ + Γ + Γ =∑ ∫ ∫ 

 (8a) 

 

( )

] 2

'' ( , ) '' (1 '' ) ' ' ' ( , )

1'' '' '' ( , ) ( , )
(2 )

T

N N N M M M
M N

jk
M M M x y x y

h x y Y Y z h x y

Y h x y H k k e dk dkρ

π

≠

∞ ∞
−

−∞ −∞

−Γ − Γ

+ Γ =

∑

∫ ∫ 



 (8b) 

where ρ = x·xo + y·yo. Notice that on the right side of equation 8 the k • r from equation 7 has 
become k • ρ at the aperture due to z = 0. The following orthogonality equations (5)  

 
2 2

2 2

( , ) ( , )

b a

k l kl
b a

e x y e x y dxdy δ
− −

=∫ ∫   (9a) 

 
2 2

2 2

( , ) ( , )

b a

k l kl
b a

h x y h x y dxdy δ
− −

=∫ ∫   (9b) 

allow us to simplify equation 8 in terms of the reflection coefficients and spectral components of 
the E- and H-fields. Here S is the dimensions of the transverse plane of the rectangular 
waveguide. By limiting the bounds of integration in equation 9, we enforce the boundary 
condition that ET(r) = 0 on the surface of the flange. Using the following general substitution 

 

2 2

2

2 2

( ) ( , )
(2 )

T

b a
jk

T
b a

ek x y dxdy
ρ

υ υα α
π

− •

− −

= ∫ ∫  (10) 

we can rewrite equation 8 as the following system of equations: 

 ( ) ( )(1 '' ) '' ( , ) ( , ) '' ( , ), ( , )T TN N x y x y x y N x y x ye k k E k k dk dk e k k E k k
∞ ∞

−∞ −∞

•+ Γ = =∫ ∫  

   (11a) 

  ( )(1 '' ) '' '' ( , ) ( , ) '' '' ( , ), ( , )T TN N N x y x y x y N N x y x yZ h k k H k k dk dk Z h k k H k k
∞ ∞

−∞ −∞

•−Γ = =∫ ∫    (11b) 

 ( )'' '' ( , ), ( , )TM M x y x ye k k E k kΓ = 



 (11c) 
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( )'' '' '' ( , ), ( , )TM M N x y x yZ h k k H k kΓ = − 

 (11d) 

 ( )(1 ' ) ' ( , ), ( , )TN N x y x ye k k E k k+Γ = 



 (11e) 

 
( )(1 ' ) ' ' ( , ), ( , )TN N N x y x yZ h k k H k k−Γ = 

 (11f) 

 ( )' ' ( , ), ( , )TM M x y x ye k k E k kΓ = 



 (11g) 

 
( )' '' '' ( , ), ( , )TM M N x y x yZ h k k H k kΓ = − 

 (11h) 

This set of equations are used to solve for ( , )T x yE k k  and ( , )T x yH k k . The solutions to the 

surface integrals of equation 10 can be determined in closed form and are calculated in the 
appendix. In order to get equation 11 into matrix form, we need to add like Γυ terms together 
from equation 11.  We can now rewrite the entire system of equations using the following two 
expressions: 

 ( ) ( )'' ( , ), ( , ) '' '' ( , ), ( , ) 2T Tx y x y x y x y Ne k k E k k Z h k k H k kυ υ υ υδ+ =

 

 (12a) 

 ( ) ( )' ( , ), ( , ) ' ' ( , ), ( , ) 2T Tx y x y x y x y Ne k k E k k Z h k k H k kυ υ υ υδ+ =

 

 (12b) 

3. Formulation of the MDM Method 

The basis of the MDM method is the system of equations described by equation 12, which 
populates the matrix. By representing the integrals in (kx,ky) space as a Riemann sum over kx and 
ky, we can formulate the MDM equation. 

3.1 Derivation of MDM Equation 

To simplify equation 12, we can write equation 7b in terms of equation 7a leaving a single 
unknown. Starting with the expression (5), 

 

 ( )


( )1( , ) ( , ) ( , )zT
zT T TTx y x y z x y

o z

k aH k k a E k k k k E k k
kυ

υωµ

  ×
= × −      





 (13) 

we can rewrite this as the matrix equation 
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









( , ) ( , )
( , ) ( , )

( , ) ( , )

x xx y xx xy x y
T Tx y x y

y yyx yyx y x y

H k k A A E k k
H k k A E k k

A AH k k E k k

    
= = =    
       





 

Evaluating the cross products and dot product of equation 13 yields 

 





( ) 





2

2

2 2

2 2
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( , )1 ( , )
( , )

x y y

x x y
T x y

yo x y x yx

xx y o x x y
T x y

yo x yo y x y

k k k
E k k

H k k
k k E k kk

k k k k E k k
A E k k

E k kk k k k

υ υ υ

υ

υ υ

υ

κ κ κ
κωµ

κ κ

ωµ κ

  
    −   = −             − −    
    − − − = =    

−        





 (14) 

Equation 12 represents a shorthand notation to represent the system of equations that will 
construct our MDM equation. However, to properly explain how these equations represent a 
matrix equation, it is better to think of these equations in longhand notation: 

 
( )'' ( , ) '' '' ( , ) ( , ) 2Tx y x y x y x y Ne k k Z A h k k E k k dk dkυ υ υ υδ

∞ ∞

−∞ −∞

• + = ∫ ∫ 





 (15a) 
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∞ ∞

−∞ −∞

• + = ∫ ∫ 





 (15b) 

This set of equations allows us to solve for ( , )T x yE k k . If we redefine the integrals as a Riemann 

sum, then equation 15 becomes 

 

( )  ( )( ) ( )
( ) ( )

'' , '' '' , , 2
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y x
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υ υ υ υ

υ υ
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+

∑∑ 



 
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 (16a) 
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k k

ox x y y x y o

e k k Z A h k k E k k k k

M k k x M k k y

υ υ υ υ

υ υ

δ + ∆ ∆ = 

+

∑∑ 



 



 (16b) 

We can now write the MDM equation. In doing so, each value of υ representing a different mode 
inside the waveguide represents the MDM row index. Since we need an invertible matrix to 
obtain a solution, υ also represents the discrete index of kx and ky in free space, which becomes 
the column index of our matrix. This creates a square matrix with a total of L samples of kx and 
ky as well as L modes. 



 

8 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 11 21 1 11 2

2 2 21 22 2 21 2

1 21 2

1 11 2

'' '' '''' '' ''
'' '' '''' '' ''

'' '' '''' '' ''
2

' '

oo

y y yT T TLx x xT T TL

y y yT T TLx x xT T TL

Ly Ly LyT T TLLx Lx LxT T TL

x xT T

y directionx direction
M k M k M kM k M k M k
M k M k M kM k M k M kTE

M k M k M kM k M k M k
L

M k M k
TM

−−




    



( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 11 21

2 2 21 22 2 21 2

1 21 2

2

' ' ''
' ' '' ' '

' ' '' ' '

y y yT T TLx TL

y y yT T TLy x xT T TL

Ly Ly LyT T TLNx Nx LxT T TL

L

M k M k M kM k
M k M k M kM k M k M k

M k M k M kM k M k M k


  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







    















1

2

1

2

2( )
0( )

( )

( )

( )

( ) 0

x T

x T

x TL

y T

y T

y TL

E k

E k

E k

E k

E k

E k

  
  
  
  
  
  
  
  

• =   
   
   
   
   
   
   
   

   




















 (17) 

In this notation, υ has taken the value of a single integer; however, each row index truly 
represents a unique wavenumber (m,n) pair.  The MDM of equation 17 has four separate 
quadrants. Quadrant 1 corresponds to the matrix elements that represent the TE modes inside the 
waveguide in the x-direction, quadrant 2 corresponds to the matrix elements that represent the 
TE modes inside the waveguide in the y-direction, quadrant 3 corresponds to the matrix elements 
that represent the TM modes inside the waveguide in the x-direction, and quadrant 4 corresponds 
to the matrix elements that represent the TM modes inside the waveguide in the y-direction 
where (kTυ) is used to represent the (kx,ky) pair. The reason the x-components and the y-
components of the MDM equation have to be separated is so that the solutions to  ( , )x x yE k k  and 
 ( , )y x yE k k  can be solved for individually. Each quadrant is L x L in dimension yielding a  

2L x 2L square matrix. The solutions to  ( , )x x yE k k  and  ( , )y x yE k k  are L element vectors. Note 

that the right-hand side vector of equation 17 is zero except for the first element, which 
corresponds to the incident TE10 mode in the waveguide.  This comes directly from the δυN in 
equation 12. 

As with any discrete representation of a continuous function, L must be large enough to ensure 
an accurate representation of the original function. However, a large L means that many more 
modes must be used in the MDM equation than are truly necessary to accurately determine the 
field inside the waveguide. This can lead to a singular matrix, which by definition is not 
invertible. Therefore, in solving equation 17 we use singular value decomposition (SVD) to 
determine the pseudo-inverse of the MDM equation. The SVD method is fully described in most 
linear algebra texts (6). 

3.2 Representation of kx and ky When z ≥ 0+ 

This section describes how to represent the values of kx and ky in the MDM equation. Since it is 
desirable to represent the stationary phase approximation of the far field in spherical coordinates, 
we must map kx and ky to (r,θ,ϕ). The stationary phase approximation is well known and widely 
used throughout the literature (5, 7, 8). The equation is repeated here for convenience: 
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( )  ( ){  ( ) }

 ( )  ( )( )
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jkr

x yo x y x y
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π
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−
≈ +

+ − + 

 (18) 

Mapping kx and ky to spherical coordinates yields 

 ( ) ( )sin cosx ok k θ φ=  (19a) 

 ( ) ( )sin siny ok k θ φ=  (19b) 

In order to get a hemisphere mapping of the radiated far field in the propagation direction, we are 
interested in values of -π/2 ≤ θ ≤ π/2 and 0 ≤ ϕ ≤ π/2. After substituting these values of θ and ϕ 
into equation 19, we get a trajectory of kx and ky onto a circle of radius ko, as shown in figure 2. 

 

Figure 2. Plot of the values of kx and ky obtained for ϕ = 0. 

Figure 2 shows all the kx and ky values obtained for ϕ = 0, –π/2 ≤ θ ≤ π/2, and Δθ = 1/L, where L 
corresponds to the size of each quadrant in the MDM equation. The angle of ϕ is represented in 
figure 2 as the angle between the kx and ky axes. Since ϕ = 0, all the kx and ky values fall on the  
ky = 0 axis. If we use ϕ = π/4 to calculate kx and ky as in figure 3, then we see that the values of kx 
and ky fall on a trajectory that makes an angle of π/4 with the ky = 0 axis. 

Using this technique, we can generate the radiated far field for any value of 0 ≤ ϕ ≤ π/2. Note that 
in both figures 2 and 3 an equal spacing between values of θ does not result in an equal spacing 
in kx and ky. Also, any value of kx and ky that falls on the ko radius yields a value of |kT| = ko, 
which corresponds to κ = 0. Any value of kx and ky that falls beyond the ko radius corresponds to 
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an imaginary value of κ. These values represent attenuating modes and are not used in the 
calculations for the incident TE10 mode. 

 

Figure 3. Plot of the values of kx and ky obtained for ϕ = π/4. 

4. Calculation of Far Field and Comparison to Simulation 

This section compares the far-field radiation pattern calculated from the MDM method described 
in section 3 to those generated using CST Studio Suite 2012.  The MDM calculations were 
performed using Matlab.  

4.1 Description of CST Model 

Figure 4 depicts the model used to simulate the semi-infinite rectangular waveguide with an 
infinite flange. Figure 4a gives the transverse dimensions of the waveguide, where a = λ/2 at  
200 MHz and b = a/2.25. As long as a ≥ b, the dominant mode will be the TE10 mode. The cutoff 
frequency for the propagation of the dominant mode is 200 MHz and the cutoff frequency for the 
next mode to propagate is 400 MHz. For frequencies below 200 MHz, no modes will propagate 
in the waveguide, and for frequencies above 400 MHz, more than one mode will propagate in the 
waveguide. Since the method described in section 2 corresponds to a waveguide that is infinite in 
one direction and ends at a radiating flange at z = 0, placing a waveguide port at the end of the 
waveguide mimics this setup, as shown in figure 4b. The waveguide port will absorb any 
reflections of additional modes from the aperture to ensure that only the propagating TE10 mode 
will contribute to the far field radiation. The direction of the arrow in figure 4b shows the 
direction of propagation for the TE10 mode. 
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(a) 

 
(b) 

Figure 4. (a) Transverse plane of the waveguide aperture. The waveguide has dimensions |a| x |b|  
and is surrounded by an infinite conducting flange. (b) This shows the z-direction of the 
waveguide with the waveguide port included.  

Figure 5 shows the distribution of the mode generated by the waveguide port as a cosine 
distribution across the long dimension of the waveguide aperture and has units of volts/meter 
(V/m). This is the expected mode distribution for the TE10 mode (9). Notice that the mode 
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distribution peaks and is symmetric about x = 0 and y = 0 as expected. The mode distribution 
does not vary in the z-direction because the mode is propagating and not attenuating.  

 

Figure 5. Illustration of the mode distribution in the rectangular  
waveguide of the infinite flange simulation in V/m. 

4.2 Result Analysis 

The calculations of the far-field radiation patterns are determined for a frequency of 300 MHz. 
This frequency was chosen because it stands farthest away from both the cutoff that will not 
allow the TE10 mode to propagate and the cutoff that will allow multiple modes to propagate. 
The far-field radiation patterns in the θo and ϕo directions are calculated from equation 18 as 

 

( )  ( )  ( )
( )

, , , 0 cos , , 0 sin

sin cos cos

x yo x y x y

x yo

F E k k z E k k z

f f

θ φ θ φ φ

φ φ φ θ

 = = + = 

+ − +
 (20) 

Figure 6a shows the patterns of the far field in the Fθ and Fϕ directions plotted on a polar graph, 
whereas figure 6b shows the patterns of the far field in the Fθ and Fϕ directions plotted linearly. 
These plots assume εr = 1 (relative permittivity) and μr = 1 (relative permeability) inside the 
waveguide. We can see from inspection that the results of solving the MDM equation agree very 
closely with the results generated by the simulation using CST Studio Suite.  
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(a) 

 
(b) 

Figure 6. (a) Polar plot (b) Linear plot - of the far-field Fθ and Fϕ  
normalized radiation patterns. 

One thing to note is that when using the SVD method in these computations the number of 
singular values used to generate the pseudo-inverse of the MDM plays a crucial role. A matrix 
with dimensions 2L x 2L will have 2L singular values. Many of the singular values will have 
magnitudes approaching zero. These values should not be used or they will affect the accuracy of 
the numerical results. On the other hand, if one has multiple singular values with useable 
magnitudes, then eliminating any of them from the calculations will also affect the results.  
Figure 7 shows a plot of the singular values in descending order for the MDM calculation 
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resulting in the patterns of figure 6. The number of singular values used for this calculation is 4. 
Generally only the first few singular values are needed. 

 

Figure 7. Plot of the singular values of the MDM in descending order. 

5. Conclusions 

Existing methods for analyzing the radiating infinite flange require the computation of the fields 
at the aperture. These fields then have to be transformed to the spectral domain before any far-
field calculations can be made. This report derives a new approach called the MDM method that 
allows for the direct computation of the radiated far fields. The result is a matrix equation that 
directly solves for the spectral components needed for the far-field stationary phase 
approximation. The results of the MDM method were successfully compared to the far-field 
radiation patterns of an infinite flange generated by commercial numerical modeling software for 
the same problem.  
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Appendix. Derivation of Surface Integrals for MDM Equation 

This section focuses on the solutions to the surface integrals in equations 10–12. If we assume 
that the dimensions of our radiating aperture are known and that the dimensions are rectangular 
with values of a ≥ b, respectively, then these surface integrals can be solved in closed form. The 
solutions yield constants, which are used to populate the MDM in equation 17.  

A-1 Surface Integrals for TM Modes 

We first solve the surface integral that arises from the electric field generated by the TM modes 
in a rectangular waveguide. The solutions for the incident and non-incident modes have the same 
form, so we use the symbol υ to denote either N or M. 

We start with the following equation, which represents the two dimensional surface integral 
corresponding to the TM mode vector for the E-field, 

 
2 2

2 2

' ( , ) ' ( , )T

b a

jk
x y

b a

e k k e e x y dxdy
υ υ

ρ− •

− −

= ∫ ∫  (A-1) 

where e’υ(x,y) is defined by equation 2a. We can extract the x-component and solve for it 
individually: 
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 (A-2) 

If we let 
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 (A-3a) 
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 (A-3b) 

then equation A-3a has a known closed-form solution when ky ≠ 0 and n ≠ 0 from (10): 
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When ky = 0 and n ≠ 0, then 
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Finally, when n = 0 then I1(ky) = 0. Similarly, when kx ≠ 0 and m ≠ 0, then 
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When kx = 0 and m ≠ 0, then  
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and when m = 0 and kx ≠ 0, then  
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Finally, when kx = 0 and m = 0, then 
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Therefore, the final form of equation A-3 is 
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Now that we have closed-form solutions for the integrals 1I  and 2I , we can determine the final 
form of A-2 as 
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Similarly, we can extract the y-component from equation A-1 and solve for it individually as 
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If we let 
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then using the same analysis we used to solve the integrals of equation A-3 we can write 
equation A-7 as 
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 (A-8b) 

Now that we have closed-form solutions for the integrals I3 and I4, we can determine the final 
form of A-6 as 

 
3 4' ( , ) ' ( ) ( )

y x y y x
ne k k A I k I k
bυ υ
π

= −

 (A-9) 

Now we solve the surface integral that arises from the magnetic field generated by the TM 
modes in a rectangular waveguide. We begin with the following equation, which represents the 
two-dimensional surface integral corresponding to the TM mode vector for the H-field, 

 

2 2

2 2

' ( , ) ' ( , )T

b a

jk
x y

b a

h k k e h x y dxdy
υ υ

ρ− •

− −

= ∫ ∫  (A-10) 

where h’υ(x,y) is defined by equation 2b. We can extract the x-component and solve for it 
individually: 
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

2 2

2 2

' ( , ) ' sin cos
2 2

yx
x

a b

jk yjk x
x y

a b

n m a n bh k k A e x dx e y dy
b a bυ υ
π π π−−

− −

         = + +                  
∫ ∫

 (A-11) 

We see that these are the same integrals as those of equation A-6, and we can write the solution 
to A-11 as 

 


3 4' ( , ) ' ( ) ( )
x x y y x

nh k k A I k I k
bυ υ
π

=
 (A-12) 

Similarly, we can extract the y-component from equation 2b and solve for it individually: 

 



2 2

2 2

' ( , ) ' cos sin
2 2

yx
y

a b

jk yjk x
x y

a b

m m a n bh k k A e x dx e y dy
a a bυ υ
π π π−−

− −

         = − + +                  
∫ ∫

(A-13) 

We see that these are the same integrals as those of equation A-2, and we can write the solution 
to A-13 as 

 


1 2' ( , ) ' ( ) ( )
y x y y x

mh k k A I k I k
aυ υ
π

= −
 (A-14) 

 
We can now rewrite equation 12b in terms of equations A-5, A-9, A-12, and A-14 as 

 

( )
 ( )

' ( , ) ' ( , ) , ( , )

' ' ( , ) ' ( , ) , ( , ) 2

x y

x y

Tx y x y x yo o

Tx y x y x y No o

e k k x e k k y E k k

Z A h k k x h k k y E k k

υ υ

υ υυ υδ

 + 

 + + = 

 







 (A-15) 

Equation A-15 represents the final form that we need to determine our system of equations for 
the TM modes. 

A-2 Surface Integrals for TE Modes 

Now we solve the surface integral arising from the electric field generated by the TE modes in 
the rectangular waveguide. We begin with the following equation, which represents the two-
dimensional surface integral corresponding to the TE mode vector for the E-field, 

 
2 2

2 2

'' ( , ) '' ( , )T

b a

jk
x y

b a

e k k e e x y dxdy
υ

ρ
υ

− •

− −

= ∫ ∫  (A-16) 

where e’’υ(kx,ky)is defined by equation 2c. We can extract the x-component and solve for it 
individually: 
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2 2

2 2

'' ( , ) '' cos sin
2 2

yx

a b

jk yjk x
x x y

a b

n m a n be k k A e x dx e y dy
b a bυ υ
π π π−−

− −

      = + +            
∫ ∫

 (A-17) 

We see that these are the same integrals as those of equation A-2 and we can write the solution to 
A-17 as 

 
1 2

2'' ( , ) ( ) ( )x x y y x
ne k k I k I k

b abυ
π

=

 (A-18) 

Similarly, we can extract the y-component from equation 2c and solve for it individually: 

 

2 2

2 2

'' ( , ) '' sin cos
2 2
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a b

jk yjk x
y x y

a b
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      = − + +            
∫ ∫

 (A-19) 

We see that these are the same integrals as those of equation A-6 and we can write the solution to 
A-19 as 

 
3 4

2'' ( , ) ( ) ( )y x y y x
me k k I k I k

a abυ
π

= −

 (A-20) 

Now we can solve the surface integral arising from the magnetic field generated by the TE 
modes in the rectangular waveguide. Beginning with the following equation, which represents 
the two dimensional surface integral corresponding to the TE mode vector for the H-field, 

 

2 2

2 2

'' ( , ) '' ( , )T

b a

jk
x y

b a

h k k e h x y dxdy
υ υ

ρ− •

− −

= ∫ ∫  (A-21) 

where  h’’υ(kx,ky) is defined by equation 2d. We can extract the x-component and solve for it 
individually: 

 



2 2

2 2
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2 2
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x

a b
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x y

a b
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         = + +                  
∫ ∫

 (A-22) 

We see that these are the same integrals as those of equation A-6, and we can write the solution 
to A-22 as 

 


3 4'' ( , ) '' ( ) ( )
x x y y x

mh k k A I k I k
aυ υ
π

=
 (A-23) 
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Similarly, we can extract the y-component from equation 2d and solve for it individually: 

 



2 2

2 2

'' ( , ) ' cos sin
2 2
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y

a b

jk yjk x
x y

a b
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∫ ∫

 (A-24) 

We see that these are the same integrals as those of equation A-2, and we can write the solution 
to A-24 as 

 


1 2'' ( , ) '' ( ) ( )
y x y y x

nh k k A I k I k
bυ υ
π

=
 (A-25) 

We can now rewrite equation 12a in terms of equations A-18, A-20, A-23, and A-25 as 

 
( )

 ( )
'' ( , ) '' ( , ) , ( )

'' '' ( , ) '' ( , ) , ( ) 2

x y

x y
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 + 

 + + = 

 







 (A-26) 

Equation A-26 represents the final form that we need to determine our system of equations for 
the TE modes. 
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List of Symbols, Abbreviations, and Acronyms 

FDTD finite-difference time-domain 

MDM modal decomposition matrix 

MHz megahertz 

SVD singular value decomposition 

TE10 transverse electric with mode number (1,0) 

TM transverse magnetic 

V/m volts/meter 
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